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SUMMARY

A key ingredient in the simulation of self-gravitating astrophysical fluid

dynamical systems is the gravitational potential and its gradient. This paper

focuses on the development of a mixed method multigrid solver of the Poisson

equation formulated so that both the potential and the Cartesian components

of its gradient are self-consistently and accurately generated. The method

achieves this goal by formulating the problem as a system of four equations

for the gravitational potential and the three Cartesian components of the

gradient and solves them using a distributed relaxation technique combined

with conventional full multigrid V-cyles. The method is described, some

tests are presented, and the accuracy of the method is assessed. We also

describe how the method has been incorporated into our three-dimensional

hydrodynamics code and give an example of an application to the collision of

two stars. We end with some remarks about the future developments of the

method and some of the applications in which it will be used in astrophysics.

1. Introduction

In recent years a number of astrophysicists [1]-[7] have developed simulation

tools which build in increasingly realistic physics. The present work grew

out of an ongoing effort by us to incorporate enough physics and to realize

that physics vcith robust algorithms so that we can simulate both existing

observed phenomena and make reliable predictions which the astronomers

can utilize in making better observations and interpreting those

observations. The ubiquitous existence of fluids and gravitation in the
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universe demands that, if we are to have even the most rudimentary

simulation code, it must inco_at le_t_nteracting_flu_s and-- _

gravitational physics. In this work,we restrict-our attention to ttl¢ _-

weak-field, Newtonian limit of gravitation: The hydrodynamics code we
have created also builds in the effects due to the Special Theory of

Relativity, so the description of high speed phenomena is included. The

restriction to weak-field gravity implies that the gravitational field is

determined by the gravitation a! potential, ychich must be a solution to

Poisson's equation in three dimensions subject to Dirichlet boundary

conditions at the edges of the computational Vo!um e. In .the coupled

hydrodynamic-gravitational system, not only the pQtenti _albut also its

gradient is needed. The gradientcontributes _to the-i_u_d's acceleration due

to its self-gravity, inducing the momentum components to change.

The traditional procedure is to dete-rmine the potential by solving the

Poisson equation with given Dirichtet boundary condition, then construct

approximations to the components of the gradient via finite differencing the

potential. However, in simulations of astrophysical gravitating fluids, the

development of quite complex flows must be anticipated. Examples from

astrophysics include supernova explosions, gravitational collapse,

propagation of high-speed jets from active galactic nuclei, star co_isions

and disruptions in dense star clusters, and realistic models of the early

universe. For most of these simulations, we need to compute the gradients

of the gravitational potential as accurately as possible , which has motivated

our development of an alternate approach to the gradient computation.

Here we describe a method which can yield more robust gradients in

systems that exhibit large variability in space. This is done using a

distributed relaxation procedure coupled with full multigrid V-cycles and is

described in Section 2. In Section 3 we present some tests of the method on

three-dimensional systems. Section 4 presents our incorporation of it into

the three-dimensional relativistic hydrodynamics code. Finally, we briefly

describe an application of the code to the collision of two stars and

comment on the applications for which the code can be used.

2. The Mixed Method Algorithm

The problems we are interested in are three-dimensional, and the results

that we present in later sections are for such problems. However, in

presenting the method, we will consider its two-dimensional version to
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makethe description easierto understandand visualize. All componentsof
the method, of both the discretizationprocessand the multigrid algorithm,
havenatural three-dimensionalanalogs.
a. The Finite Volume Element Discretization Consider the following

partial differential equation defined on some square domain f_ in _2:

- V.V¢ =/ in f_,¢ g on 0f_.

We let u and v denote the components of the gradient of -¢:

(1)

(u,v) = -V¢

Then the partial differential equation may be written in the form of a

first-order system in

u + Cx =0 (u equation)
v + Cy - 0 (v equation)

u_ + v_ - f (p equation),

(2)

with boundary condition

¢ = g on 0_.

Here the labels u,v, and p for the equations are introduced simply for

convenience. To discretize this system, we follow the Finite Volume

Element principles developed in [8]. Consider a uniform square mesh fl h

with mesh size h that covers ft. We introduce three sets of control volumes,

one for each of the three equations in Eq.2. These volumes are shown in

Fig. 1. We denote by//the set of all volumes U that will be used to

discretize the u equation in Eq.2. Similarly, we will use the notation V and

:P for the sets of volumes V and P for the v and p equations respectively.

For our finite element space we consider the lowest order Raviart-Thomas

elements on the triangulation given by the volumes 7_:

u h is linear in x and constant iny on each P E T_,

v h is linear in y and constant in x on each P E :P,

Ch is constant on each P E 7).

The location of the nodes for each of the unknowns with their indexing is

also shown in Fig. 1. We can now disretize the equations. We take the u
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equation in Eq.2 and inte_ateqt--over each_OE/d. As anexample, let Ui,j
be the volumein//that is centeredat the interior u h node (i,)): We then
have

which implies

fv,,_ (u + ¢=) dxdy =

h2/. h 6uhj h h-_-['ui-l,j + + u_+l,j) + h(¢i+lj+l

= 0,

- = 0.

Integrating the v equation in Eq.2 over an interior V volume yields a

similar discrete expression involving nodal values of v h and Ch. integrating

the p equation in Eq.2 over the volume in P Centered at the interior ch

node (i, j); denote this volume by Pij; we get

fp,., (ux + v_) dxdy
which implies

-- Ui_I,j_ 1 -[- 'Uh_l,j -- Vh_l,j_l) -- h2fi,j.

Here, f_j is the value of f at the ¢ node (i,j), Which results from assuming

that f is (approximated by) a piecewise constant function on P. The only

remaining part of the discretization involves integrating the u equation in

Eq:2 over the "half size" l/i volumes on the left and righi boundaries, and

similarly integrating the v equation in Eq.2 over the "half size" V volumes

on the lower and upper boundaries. We illustrate this process by

integrating the u _tuation in Eq.2 over the volume UIj that has the

boundary u h node (1, j) as the midpoint of its left edge. We have

= fi,,,,: ay
, = ::

which implies

or

fu_,,(u + Cx) dxdy

,:/o ,, +

:h_ h :.h :.... h
-g(3ul,j + u2,_) + h(¢2,_+_)

-- 0,

Cf, =o

= h¢lj+ 1.

Note that h¢l,j+l is on the boundary and hence is known. To summarize, the

discretization has produced for each U volume a discrete version of the u

equation in Eq.2, for each V volume a discrete version of the v equation in

Eq.2, and for each P volume a discrete version of the p equation in Eq.2.

b. The Multigrid Algorithm We assume that the reader is familiar with

the fundamentals of multigrid methods; good references are [9],[8], [10]. We
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consider a family of uniform square grids _'_h that cover our region fl, where

h denotes the mesh size. Fig. 2 shows a coarse grid fl2h, with twice the

mesh size of the grid _h in Fig. 1. On each grid flh we can apply the

Finite Volume Element discretization process, and we write the discrete set

of equations that this process generates as

Lhz h = F h, (3)

where z h = (u h, v h, Ch)t and F h = (fu h, fv h, fh)t and the unknowns, u h, v h,

and ch are the nodal values of the corresponding functions on the grid fib.

Note that the values of ¢ at nodes on the boundary are known so they are

not included in Ch; however, as mentioned in the last section, these

boundary values of ¢ do appear in the equations generated by integration

over the U and V volumes near boundaries, resulting in the possibly

nonzero terms fu h and fv h in Eq.3. In this section, we now define the basic

components of relaxation, interpolation, and restriction that are necessary

to implement a multigrid algorithm.

For the equations on a grid _'l_, we use a distributive relaxation process

similar to that presented in [10]. We can think of relaxation as a three step

process. First, we sweep over all of the u u nodes, change the value of uihj so

that the U equation at (i, j) is satisfied. Second, we perform a similar

Ganss-Seidel relaxation of all of the V equations. Note that these two steps,

the U and V relaxation, are independent of each other and could be

performed in parallel. Finally, we step over the ch nodes and change the

value of ¢ih,j and the values of u u and v h that lie on the edge of the volume
h h 'Uh and h We change these fivePi,j, namely uij_l, Ui_l,j_l, i-l,j, Vi-l,j-l"

unknowns so that the P equation at (i,j) is satisfied and so that the

residuals of the U equations at (i,j - 1) and (i - 1, j - 1) and of the V

equations at (i - 1, j) and (i - 1, j - 1) are unchanged. To allow
vectorization, the Gauss-Seidel relaxation performed in each step is done in

a red/black ordering.

For defining interpolation operators, we use the same principles as outlined

in [8]. The Finte Volume Element discretization is based on finite element

spaces for the variables uh,v h, and ch, SO we can simply use the relationship

between the finite element spaces on the different grids to define

interpolation. To define the interpolation operator for ¢, which we denote

I h ¢2has (¢)2h, we note that is constant on the grid 2h volume PI,j.
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Referring to Figs. 1 and 2, we thus have the following characterization of

_Fi,j _)i+l,j = Wi,j+l _" Wi+I,j+I -- (Fi:J _:

To define the interpolation operator for u, which we denote as I(u)2hh, we

note that u 2h is linear in x and constant in y on the grid 2h volume PI,J.

We thus have the following characterization of u h = I(u)hgu 2h. (See Figs. 1
and 2)

h __ U h __. ?.t2h
Ui-l,j-1 -- i-l,j I-1,J-1

h __ h 2h
"Ui+I,j_ 1 -- Ui+I, j _-- UI,j_ 1

h h 2h ...... :-2h........... :: : : -
ui,j_ 1 = ui, j = 1/2(ui_l,j_ 1 + ui,j_l) ....

The definition:of the interpolation operator for v is s_mil_ .....

For defining restriction operators, we again use the same principles as

outlined in [S]: in the correction-scheme multigr_d algorithm, which we-hs6 -

here, restrictioff-0perators are used t0-t_s-fern_ght-hand_sides :and :-::_:::: -_

residuals of equations, not the unknowns ihemselves. The definitions of the

restriction operators are based on the relationship between the volumes on

the various grids. The idea is to lump several of the: grid h right'hand Sides

to produce the grid 2h right hand sides. To define the restriction operator

for the P equation, which we denote as I(P)h h, we note that a grid 2h

volume PI, J wholly contains four grid h P volumes. We thus have the

following characterization of f2h = i(P)hhfh, referring again to Figs. 1 and
2:

............... h h thf_,_ = £'3 + f,+_,j + f_,j+_+ f_+_,j+_-
To define the restriction operator for the U equation, which we denote as

I(U)2h h, we note that a grid 2h volume UI,j in thelnterior of f2 wholly

contains two grid h U volumes and half of four others. We thus have the

following characterization of fu 2h = I(u)2hfuh, again referring to Figs. 1
and 2:

2h ==h ...... .h .......... h .... .h ........ h = h:
fu1,j_ I -- fui+l, j + fui+15_l + 1/2(fUi,j + fui,¢_l + fui+2,j + fUi+2,j_l).

The relationship between U volumes at boundaries is different; for example,

the grid 2h U volumes on the left boundary of 12 wholly contain two of the

grid h U volumes and half of two others, yielding Figs. 1 and 2:

2h h h h
f_l,J-1 = fUl,j "1- f_Zl,j-1 "1- 1/2(fuhj + fun,j_1).



The definition of the restriction operator for the V equation is done in a
similar fashion.

3. Tests of the Mixed Method Algorithm

A standard approach to Eq.1 is to solve a discrete equation based on

cell-centered finite differences for approximating ¢, then to use simple

differencing of this approximation to get the components of its gradient.

We performed some numerical tests to investigate what advantage, in terms

of accuracy, the mixed method provides over this standard approach. These

tests were for problems with exact solution

¢(x,y,z) = sin(klx)sin(k2y)sin(k3z) with _ = [0, _]3. By varying kl,k2,

and k3, we were able to see the effect that oscillations in the solution had

on the accuracy of the methods. Below are results for some of these tests

on a grid with 32 cells in each direction.

kl k2 k3
1 1 1

1 16 16

16 1 1

16 16 16

MIXED METHOD

¢_7"7"

STANDARD METHOD

eel'?"

7.90E-4 8.15E-4 1.58E-3 8.15E-4

1.47E-1 1.50E-1 4.59E-1 4.72E-1

3.61E - 01.46E- 1

1.47E- 1

4.56E- 1

4.60E- 13.60E - 0

3.53E- 0

3.60E - 0

Here, ¢_ and (¢x)_r are pointwise 12 norms of the error in ¢ and its x

derivative scaled by the volume term h z. These results are indicative of

results seen for other combinations of kl,k2, and k3. For smooth solutions,

the methods give nearly identical results. However, for oscillatory solutions,

the mixed method gives more accurate results, particularly for ¢.

4. Incorporation of the Mixed Method Solver into

the Three-Dimensional Hydrodynamics Code

a.The Physics and the Code The physics included in the present code

consists of a perfect fluid with an adiabatic equation of state formulated in

a generally covariant manner. The interval between events in spacetime is

represented in the present work in the form

ds 2 = -(c_ 2- _i)dt2 + _/ij(dx _ + fiidt)(dxJ + _Jdt). (4)

The function _ is called the lapse and represents the lapse of proper time at

a given spatial point. The vector field f_ is called the shift vector and
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determines how much the spatial coordinates shift from one t -= constant

slice to the next infinitesimally later one. The second rank symmetric

tensor field 3'o is the metric tensor of the spatial geometry. In the general

theory of relativity[12], the four-dimensional geometry of spacetime is

dynamic and the lapse, shift, and three metric are related to the

kinematical description of the coordinates of the observer and the spatial

geometry. The fluid energy-momentum tensor must obey a local

conservation law in order to be consistent with Einstein's theory. When

supplemented with the conservation of Baryons, the conservation laws can

be written in the following form:

Rest-mass conservation

1 0 1
1 ('r_ d) +

a_ Ot

Internal energy equation

± i(7_dv') =0 (5)
a,,/2

1 _(7½e) 1 0 __ _ _p( 1 ___t(o,_W)+ 1 (_2ev) = +
aT_ a_ Ox i

Mom( ntum equation

1 0 (7 _wv,))
!

ate_Ox i
(6)

1 0 1 1 0 _ OP In a

a72_- Ot (7r S_) + a_/r_ Ox_ (7_Sjvi) - Ox_ + (d + e + PW)W-o-_x_

Si Off i 1 SkSl O_ ki (7)
a OxJ 2W (d + e + PW) OxJ

The variables d, e, and Si, which are used in the code, are defined as

follows: d = pW, e = peW, and Si = (p + pe + P)ui. Here d, e, and S_ are

respectively the coordinate mass density, internal energy density, and

covariant components of the relativistic momentum density. Eq.(5-7) are

the equations of general relativistic fluid dynamics in a general background

spacetime. Since the present paper is restricted to the study of phenomena

with weak gravitational fields, we introduce the following Newtonian

approximations to the lapse, shift, and three-metric in Cartesian

coordinates:

a - 1 +¢ (8)
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_3_ -_ 0 (9)

9'ij _- 6ij. (10)

The scalar field ¢ is the Newtonian gravitational potential and must satisfy

the Poisson equation

V2¢ = 47rGp, (11)

in the computational volume and Dirichlet boundary conditions on the

volume edges.

With the Newtonian approximation to the geometric variables it then

follows that the self-gravity of the fluid contributes to the change in the

momentum density through the term pV_. The value of c_ itself enters

several places in the fluid equations. Thus, a complete characterization of

the self-gravitating fluid dynamics requires both the lapse and its gradient

vector. It is these quantities that our mixed method computes in a robust

manner. Concerning the elements that constitute the hydrodynamics part

of the code, the methods used may be characterized as explicit finite

volume schemes. The physical variables d, e, and S_ are the fundamental

quantities. These variables are discretized on a staggered grid system with

the conventions that scalar variables such as density are stored at zone

centers, while vector variables are centered on the faces of the zones. The

biggest challenge is by far to treat the advection of the physical variables as

accurately as possible. This is especially true for the astrophysical

applications, since complex flows abound. We want the code to be able to

detect and track shocks adequately. The advection method implemented in

the code is based on a monotonic advection algorithm due originally to Van

Leer [11]. It is robust and tracks shocks reasonably wet1. The code uses

artificial viscosity to smooth developing discontinuities over a few zones.

For this we use an artificial viscosity pressure, which is a combination of

linear and quadratic functions of the monotonized four-velocity differences.

The code uses an adiabatic equation of state of the form P = (F - 1)p_,

where F is the parameter that characterizes the equation of state and can

itself be a function of the thermodynamic variables and position. For the

model stars we discuss here, F is chosen to be a constant. The overall

structure of a single computational step of the code is described in [7] and

illustrated as follows:
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[InitiaLData j

]Time_Step_Constraint I

IAcceleration]

IAr tificial_giscosity ]

Transport[ : _Density_and_Energy_ ....

i
Momentum_Transport]

I
[Poisson_Solver]

At the end of the computational step the fullyupdated physicalvariables

are available.The Poisson_Solver routine isinvoked and itishere that we

utilizeour mixed method solver,which returns ¢ and V¢.

b.Application to Collislon of Stars As a nontrivialapplicationof the

code, we present a summary of the resultsof using the mixed method

Poisson solverin the simulation of the collisionof two starswhich are

initiallyin equilibrium. The initi_data were chosen so that the mass

density and energy density _rrespond to two equilibrium sph.erica! stars.

We )iav6_c]a_e_:the_n :-- ] poly_rop_c_uati0n_of_te: This equation of

state has the following functional forms for the initial mass density and

energy density: d = do and e = e0 where _ = lrr/ro and ro is

the equilibrium radius of the star. The two model stars were placed with

their centers displaced in the z = 0 plane. We show here the results of

simulations in which the radii were chosen equal to 0.26R,o1_ and the_

central mass density do equal_t06.6g/cm 3:=The =central temperature 0f each

star was chosen to be 4.0e06 K. The simulations shown here were all done

with a (66)3 _i& Ai]:comt)ut, ationswere performed on the Ohio ::: _::

Supercomputer Center's Cray YMP8/864. The hydrodynamics part of the

code has been highly vectorized.
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Fig. 3a shows the contours for the initial potential and its gradient

components in the z = 0 plane for a run of an off-center collision. The stars

were chosen initially to have a relative velocity comparable to the orbital

velocity. Fig. 3b is a plot of the density contours and velocity field in the

z=0 plane. Subsequent motion is induced by the combined effects of the

initial momentum and the self-gravity of the two stars. Because the stars

attract each other, they develop accelerations toward each other and the

hydrodynamics that results alters the density and energy distributions.

Typical simulations were run for at least on the order of the gravitational

free-fall time. Given the combined interactions of the hydrodynamics with

self-gravity, we expect disruption of the two stars if the collision is

sufficiently violent. Figs. 4a_b show respective snapshots of the potential

contours and gradient and density contours and velocities for late times in

the off-center collision.

We conclude from these simulations and others that the mixed method

Poisson solver produces physically acceptable results when combined with

the three-dimensional hydrodynamics. This code is currently being used to

simulate higher resolution runs and other multiple-star systems. We will be

using the present code to treat the collision of two neutron stars and

compute its final state and the amount of gravitational radiation emitted

by such systems. Such computations are of importance because they can

shed light on the astrophysics of the mergers of neutron stars as well as

provide potentially important benchmarks of how much gravitational

radiation should be expected from such encounters.
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